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Abstract Lakes in the McMurdo Dry Valleys of Antarctica
are characterized by a permanent ice cover and little or no
anthropogenic influence. Although bacterial cultures have
been obtained from these habitats, recent culture-independent
studies indicate that the most abundant microbes in these
systems are not yet cultivated. By using dilution-to-extinction
cultivation methods with sterilized and nutrient-amended lake
water as media, we isolated 148 chemotrophic psychrotoler-
ant bacterial cultures from fresh surface water of Lake Fryxell
and the east lobe of Lake Bonney and the hypersaline, suboxic
bottom water from the west lobes of Lake Bonney. Screening
of the 16S ribosomal ribonucleic acid (rRNA) genes of the
cultures by restriction fragment length polymorphism (RFLP)
yielded 57 putatively pure psychrotolerant, slow growing
cultures grouped into 18 clusters. The sequencing of 16S
rRNA genes of randomly selected representatives of each
RFLP cluster revealed that the corresponding isolates belong
to the Alphaproteobacteria (six RFLP patterns), Betaproteo-
bacteria (six RFLP patterns), Bacteroidetes (four RFLP
patterns), and Actinobacteria (two RFLP patterns). Phyloge-
netic analysis of the sequences showed that the vast majority

of the isolates were not closely related to previously
described species. Thirteen of 18 RFLP patterns shared a
16S ribosomal deoxyribonucleic acid sequence similarity of
97% or less with the closest described species, and four
isolates had a sequence similarity of 93% or less with the
nearest described species. Phylogenetic analysis showed that
these sequences were representatives of deeply branching
organisms in the respective phylum. A comparison of the
isolates with 16S rRNA clone libraries prepared from the
same environments showed substantial overlap, indicating
that dilution-to-extinction culturing in natural lake water
media can help isolate some of the most abundant organisms
in these perennially ice-covered lakes.

Introduction

The McMurdo Dry Valleys of Antarctica (MCM) are the
sites of the only perennially ice-covered lakes on Earth. The
perennial ice covers prevent wind-driven mixing and inhibit
gas exchange, light penetration, and allochthonous sedi-
ment deposition [28, 29, 36, 39]. As a result, the water
columns of these lakes are highly stable. Lake Bonney (LB)
and Lake Fryxell (FRX) are two such lakes located in the
Taylor Valley. Both LB and FRX have chemoclines
separating oxygen-rich, fresh surface waters from oxygen-
depleted, saline deep waters. LB, which has a maximum
depth of 38 m, has two lobes that are separated by a sill at
13 m depth. The surface waters of east lobe LB (ELB) and
west lobe LB (WLB) are chemically similar; however
because of a strong chemocline at ∼15 m depth, the deep
waters are ancient, do not interact with each other, and their
solutes are derived from different origins [21]. Thus, we
treat ELB and WLB as discrete lake systems. FRX has a
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maximum depth of 18 m with a weak chemocline at ∼10 m
depth. FRX possesses highly sulfidic, brackish deep waters.
The lakes have been the subject of extensive studies of the
paleohistory, biogeochemical dynamics, and ecosystem
interactions (e.g., [21] and references therein).

Whereas broad-scale biogeochemical studies have indi-
cated the presence of an abundant and active microbial
community in the water columns of these lakes [37],
relatively little is known about the diversity of these
microbes. Cultivation of psychrophilic organisms and the
search for novel cold-stable enzymes is of major impor-
tance for biotechnology and was one of the driving forces
behind exploration of freshwater lakes in Antarctica [2]. A
variety of heterotrophic, phototropic, and chemolithotrophic
bacteria have been isolated from Antarctic lakes, including
MCM lakes [3, 4, 18, 19, 22, 23, 32, 33, 38] by using liquid
or solidified complex media and incubation temperatures
allowing for rapid growth of the organisms (5–15°C).
However, recent culture-independent studies have indicated
that the most abundant phylotypes in the water column
remain uncultured (Foo and Lanoil, unpublished; [15]).

High-throughput culturing of marine oligotrophic organ-
isms using dilution-to-extinction methods and natural
seawater as basis for the medium [6, 9] has resulted in the
cultivation of Candidatus Pelagibacter ubique, the most
abundant oligotrophic organism on earth [30]; Lenti-
sphaerae, a hitherto unrecognized phylum of bacteria [8],
and many other previously uncultured organisms (e.g., [7]).
Similar to marine environments, dilution-to-extinction
culturing in limnetic systems yielded abundant hitherto
uncultured bacteria [14, 27].

In this study, we explore the use of dilution-to-extinction
high-throughput culturing on oligotrophic bacteria from
water samples of three perennially ice-covered MCM lake
systems: ELB, WLB, and FRX. The goal of this project
was to obtain numerically abundant not-yet-cultivated
organisms for future studies of their activities and physiol-
ogy to better understand their interactions with the unusual
geochemistry of the MCM lakes.

Materials and Methods

Site Description and Sample Collection

LB is located at the southwest end of the Taylor Valley
proximal to the Taylor Glacier at 77.43°S, 162.20°E [36].
The lake possesses two glacially scoured basins that are
separated by a sill at 13 m depth. The lake is 38 m deep,
with a chemocline at approximately 15 m depth. Thus, ELB
and WLB are chemically similar in their surface waters but
are distinct below the chemocline and thus are treated as
separate systems in this and previous studies [21]. There are

no surface outflows from LB, and the only known water
loss occurs from the ablation of ice from the surface of the
lake. LB is fed primarily by meltwater from the Taylor
Glacier but also from other mountain glaciers in the
surrounding valleys. FRX is located toward the northeast-
ern end of the Taylor Valley at 77.37°S, 163.09°E, between
the Commonwealth and Canada Glaciers [36]. The lake is
18 m deep with a chemocline at approximately 10 m, below
which the water is brackish and sulfidic. Meltwater sources
include the Commonwealth and Canada Glaciers and sur-
rounding mountain glaciers. Like LB, FRX has no surface
outflows, and the only source of water loss is through
ablation of surface ice.

Water was collected with a Niskin bottle from FRX at a
depth of 6 m on November 17, 2003 and from ELB at a
depth of 6 m and WLB at a depth of 38 m on November 26,
2003. Table 1 shows the dominant chemical and physical
features of these samples. Samples from FRX and ELB are
both fresh, fully oxygenated water with low nutrient and
organic carbon content, whereas the WLB sample is from
the suboxic, nutrient-rich, hypersaline bottom water [16,
21, 36]. These specific depths were chosen to allow a cross-
lake comparison between equivalent depth samples (ELB
and FRX 6 m) and including a sample from the hypersaline
bottom waters (WLB 38 m). The depths were also chosen
because they match some of the depths sampled for a
cultivation-independent study (Foo and Lanoil, unpub-
lished). Samples for inoculation were amended with 15%
glycerol (v/v), frozen, and shipped to Oregon State
University on dry ice.

Media Preparation and Sample Handling

Triplicate 1-mL samples from all three locations were fixed
with 2% formalin, stained with 4′,6-diamidino-2-phenyl-
indole (DAPI) for 15 min, and subsequently filtered on
polycarbonate membranes, and microscopic-direct cell
counts were determined as previously described [9].
Media preparation followed the protocol for low-nutrient
heterotrophic media [9]. Briefly, the water was filtered
through a tangential flow filtration system (Millipore) using
a 30-kDa molecular cutoff ultrafilter to remove cells. The
media was then autoclaved for 3 h in 20-L carboys,
followed by CO2 sparging for 16 h and aeration for 48 h.
For FRX and WLB samples, ammonium chloride (1 μM),
sodium phosphate (0.1 μM), 0.001% (w/v) of a mixed
carbon solution “MC” [7], and a 104 dilution of a vitamin
mixture [30] were added to the medium [27]. For ELB
samples, ammonium chloride (10 μM), sodium phosphate
(1 μM), and a modified carbon solution mixture was added
(“MC2,” containing 0.001% [w/v] each of formic acid,
ethanol, pyruvic acid, glycerol, succinic acid, ribose,
glucose, n-acetyl glucosamine, glycolate, and glutamine).
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Inoculation and Cultivation

Dilutions of the inocula were done in chilled media (4°C).
Forty-eight-well polystyrene microtiter plates (Becton
Dickinson, Franklin Lakes, NJ) were filled with 2 mL
media, inoculated, and incubated at 4°C in the dark. Final
inoculation densities were approximately 3 (two plates) and
10 cells mL−1 (two plates) for FRX. For WLB, inocula
were approximately 3 (one plate) and 10 cells mL−1 (one
plate). For ELB, inocula were approximately 20 cells mL−1

(four plates).

Screening and Storage of Cultures

After incubation for 24 weeks, 200 μL of each well was
stained with DAPI, fixed with formalin, and transferred to
a polycarbonate membrane, according to Connon and
Giovannoni [9]. Membranes were screened using an
epifluorescence microscope (DMRB, Leica, Germany) and
scored as positive if the cell concentrations were greater
than 1×105 cells mL−1. Duplicate 200-μL aliquots of positive

cultures were amended with 10% glycerol (v/v) and frozen
in liquid nitrogen for storage.

Molecular Analysis

Deoxyribonucleic acid (DNA) was extracted from 200-μL
samples of positive wells with a DNeasy extraction kit
according to manufacturer’s instructions (Qiagen, Valencia,
CA). 16S ribosomal ribonucleic acid (rRNA) gene sequences
were amplified by polymerase chain reaction (PCR) using
1 μL of the extracted DNA as template as described by
Connon and Giovannoni [9].

Positive PCR products were digested with HaeIII
restriction endonuclease for 2 h at 37°C. Digests were
electrophoretically separated on 3% agarose gels, stained
with SYBR Safe (Invitrogen, Carlsbad, CA), and visualized
under UV light. If the sum of the length of the bands was
equal to or less than one 16S rRNA gene (∼1,500 bp), then
the culture was considered pure. Strains with identical
RFLPs isolated from the same environment were grouped
together. PCR products of two randomly chosen strains of

Table 1 Physical and chemical data for samples studied here

ELB 6 m FRX 6 m WLB
38 m

Temperature (°C) 1.7 0.7 −4.2
Conductivity (mS cm−1) 2.5 1.6 79.4
PH 8.5 7.8 5.9
Dissolved Oxygen (mg L−1)a >20b >20b 0.95c

DIC (mM) 1.9 8.85 67.55
DIN (μm) 11.8 1.36 319.3
DOC (g C L−1) 1.02 3.18 21.42
Na+(mg L−1)d 480 251 39,178
K+(mg L−1)d 24 26 1,386
Mg2+(mg L−1)d 74 29 9,127
Ca2+(mg L−1)d 90 51 2,311
Si+(mg L−1)d 2.4 4.6 4.3
SO4

2−(mg L−1)d 204 71 4,912
NH4

+(μM) 0.6 ND 223
SRP (μM) 0.01 0.29 0.6
NO3

− (μM) 7.5 ND 1.2
POC (μM)e 22 16 13
PON (μM)e 268 195 151
C/N ration (particulate) 13 21 88
TDR (nM TDR day−1) 0.013348 0.029908 0.000023
CHL (μg chl-a L−1) 2.5 6.6 0.2
PPR (μg C L−1 day−1) 1.1 2.5 ND

Data is from the MCM LTER (http://www.mcmlter.org). All data is from the 2003–2004 season unless otherwise indicated.
DIC Dissolved inorganic carbon, DIN dissolved inorganic nitrogen, DOC dissolved organic carbon, SRP soluble reactive phosphate, POC
particulate organic carbon, TDR thymidine incorporation, CHL chlorophyll a concentration, PPR primary productivity, ND not detected
a Data from 2000–2001 season
b Data collected with an oxygen meter that has a maximum of 20 ppm
c Because of high salinity, this value should be considered an estimate rather than an exact value.
d Data from 2004–2005 season
e Data from 2002–2003 season

Dilution-to-Extinction Culturing of Planktonic Bacteria 397397

http://www.mcmlter.org


each RFLP pattern (if applicable) were sequenced with
primer 27F on an ABI 111 sequencer (Applied Biosystems,
Foster City, CA). ABI traces were manually checked using
DNAStar (GATC, Konstanz, Germany). The length of the
partial sequences was between 700 and 1,000 bp. Pairwise
distance similarity matrices as integrated in ARB were used
to calculate the identity to closest-related sequences. Chimera
checks were performed with the online tool available at the
Ribosomal Database Project at Michigan State University
(http://www.rdp8.cme.msu.edu/). No obvious chimeric
sequences were detected.

Phylogenetic Analysis

Sequence data were analyzed with the ARB software
package (http://www.arb-home.de). The new sequences
were added to the ARB database and aligned with the Fast
Aligner tool. Alignments were checked and corrected
manually where necessary. 16S rRNA gene sequences from
the isolates were compared to sequences in public databases
with nucleotide basic local alignment search tool
(BLASTn) [1]; 16S rRNA gene sequences with high
similarities to those determined in this study were retrieved
and added to the alignment. Highly variable regions of the
16S rRNA gene sequences and sequence positions with
possible alignment errors were excluded by using only
those positions of the alignment that were identical in at
least 50% of all sequences.

Framework trees were calculated with fastDNAmL [26],
a maximum-likelihood method implemented in ARB, using
only sequences greater than 1,400 bases. Shorter sequences
were added to these trees with the ARB parsimony tool,
which allows the addition of short sequences to existing
phylogenetic trees without changing global tree topologies
[20]. The stability of the branching pattern was tested with
the neighbor-joining and maximum-parsimony (DNA-

PARS) methods included in the PHYLIP package [10]
implemented in ARB. The reproducibility of the branching
pattern was confirmed by bootstrap analysis with 1,000
replicates with the maximum-parsimony algorithm and the
program Seqboot implemented in PHYLIP.

Accession Numbers

Sequences were submitted to GenBank under accession
numbers EF628475–EF628504.

Results and Discussion

Total prokaryotic cell counts of lake water samples were in
a similar range as previous cell counts in these systems
[37]. Cell concentrations were highest in FRX with 1.6×
106±2.4×105 cells mL−1 and nearly an order of magnitude
lower in both WLB (3.2×105±7.2×104 cells mL−1) and
ELB (2.3×105±5.7×104 cells mL−1).

In an initial screen, no growth was observed after
1 month. Final screening of the cultures was performed
after 24 weeks incubation in the dark at 4°C. In total,
dilution-to-extinction culturing yielded 148 cultures: 103
from ELB, three from WLB, and 42 from FRX. Screening
of the cultures by RFLP of 16S rRNA genes revealed that
57 were putatively pure cultures, whereas 54 had a RFLP
pattern indicative of mixed cultures. No PCR products,
either with bacterial primers or with primers specific for
Archaea, were obtained for 37 cultures (Table 2). Presum-
ably, the lack of amplification was due to the difficulty of
lysing the cells or the presence of compounds interfering
with PCR. These cultures were not pursued further. Forty-
six of the pure cultures presented in this study were isolated
from ELB, nine from FRX, and only two were from WLB
(Table 2). Based on the dissolved carbon concentration
(DOC) content of the media (Table 1), isolates from ELB
and FRX were oligotrophic according to the definition of
Fry (i.e., growth at 6 g C L−1; [12]). However, the WLB
isolates grew in media containing significantly higher DOC
and thus are mesotrophic. Based on their growth temper-
ature and incubation time (i.e., 4°C and 24 weeks,
respectively), all isolates are psychrotolerant and slow
growing.

Table 2 Summary of dilution-to-extinction results

FRX ELB WLB Total

Positive wells 42 103 3 148
Axenic 9 46 2 57
Mixed 15 38 1 54
No PCR product 18 19 0 37

Table 3 Distribution of bacte-
ria by major phylogenetic
group and similarity to nearest
validly described species

Phylum/division Number
of RFLPs

16S rRNA
gene similarity
(≥99%)

16S rRNA
gene similarity
(≥97%)

16S rRNA
gene similarity
(≥93%)

16S rRNA
gene similarity
(≥90%)

Alphaproteobacteria 6 3 3 0 0
Betaproteobacteria 6 2 3 0 1
Bacteroidetes 4 0 3 1 0
Actinobacteria 2 0 0 1 1

398 U. Stingl et al.

http://www.rdp8.cme.msu.edu/
http://www.arb-home.de


Pure cultures were grouped according to their RFLP
pattern into 18 groups containing between 1 and 12 strains
(Table 3). There was no overlap of patterns from the three
different locations, except for RFLP groups FRX1 and
ELB7 (Table 4). 16S rRNA genes of two randomly selected
strains from each RFLP group were partially sequenced.
16S rRNA gene sequences from isolates from the same
group and location were 99–100% identical; therefore, the
groups were considered homogenous. BLAST searches of
the sequences in GenBank revealed that the strains
belonged to the Alphaproteobacteria (six groups), Betapro-
teobacteria (six groups), Bacteroidetes (four groups), and
Actinobacteria (two groups; Table 3).

Detailed phylogenetic analysis revealed that the isolates
shared 88–99% 16S rRNA gene sequence identity with the
most closely related validly described species. Whereas six
groups had a sequence similarity of 99% or more to the
closest described species, 12 of them shared less than 97%
sequence similarity, and four of these had a sequence
similarity of 93% or less (Table 3).

Phylogenetic trees are shown for sequences that were
less than 99% related to those of validly described bacterial
species (Figs. 1, 2, 3, and 4). RFLP groups with greater
than 99% sequence similarity to described species were in
all cases related to common soil bacteria (Table 4) and were
omitted from further phylogenetic analysis.

Table 4 Taxonomic affiliation of isolates determined by BLAST similarities to nearest validly described neighbors

Habitat RFLP
group

Strains
isolated

Sequenced strains
(HTCC numbers)

Accession numbers Phylum/division Closest
described species

Percent 16S
rDNA similarity

FRX 1 1 4019 EF628476 Alphaproteobacteria Sphingopyxis
witflariensis

94

2 2 4034 EF628478 Alphaproteobacteria Agrobacterium
sanguineum

99

3 1 4029 EF628477 Betaproteobacteria Ralstonia
picketti

99

4 2 4013, 4042 EF628475, EF628481 Betaproteobacteria Polaromonas
aquatica

97

5 2 4037, 4045 EF628479, EF628482 Betaproteobacteria Aminomonas
aminovorus

92

6 1 4038 EF628480 Betaproteobacteria Alcaligenes
xylosoxidans

95

ELB 7 11 4052, 4111 EF628483, EF628493 Alphaproteobacteria Sphingomonas
natatoria

96

8 5 4081, 4096, 4103,
4120, 4125

EF628486, EF628489,
EF628491, EF628496,
EF628499

Alphaproteobacteria Erythrobacter
luteolus

95

9 1 4110 EF628492 Alphaproteobacteria Bradyrhizobium
elkanii

99

10 2 4077, 4112 EF628485, EF628494 Betaproteobacteria Polaromonas
vacuolata

97

11 2 4118, 4126 EF628495, EF628500 Bacteroidetes Algoriphagus
yeomjeoni

97

12 9 4072, 4101 EF628484, EF628490 Bacteroidetes Pedobacter
caeni

93

13 12 4086, 4123 EF628487, EF628498 Bacteroidetes Cellulophaga
pacifica

94–95

14 1 4122 EF628497 Bacteroidetes Flavobacterium
frigoris

95

15 1 4091 EF628488 Actinobacteria Acidimicrobium
ferrooxidans

88

16 2 4138, 4145 EF628501, EF628502 Actinobacteria Sporichthya
polymorpha

92

WLB 17 1 4155 EF628504 Alphaproteobacteria Sphingomonas
rhizogenes

99

18 1 4153 EF628503 Betaproteobacteria Pedomonas
saccharophila

99
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  Alpha proteobacterium, AY145545
  HTCC4052, ELB7, EF628483

  HTCC4019, FRX1, EF628476

  HTCC4111, ELB7, EF628493

57

  Alpha proteobacterium, AY145546
  Alpha proteobacterium, AY145544

100

66

  Sphingomonas sp., AJ620197
  Uncultured alpha, AJ582032

84

  Alpha proteobacterium, AF235997

51

  Sphingomonas sp., AJ620198
  Drinking water bacteria, AY328850

56

  Sphingopyxis alaskensis, AF145753
  Sphingomonas macrogoltabidus, D12640 D13723

  Sphingopyxis witflariensis, AJ416410

89

99

83

 Sphingomonas natatoria, Y13774
  Sphingomonas ursincola, Y10677

100

  HTCC4081, ELB8, EF628486

  HTCC4103, ELB8, EF628491

  HTCC4096, ELB8, EF628489

HTCC4120, ELB8, EF628496

HTCC4125, ELB8, EF628499

B08Sea23, Arctic sea, AF468353
  Alpha proteobacterium, AY145559

83

   Erythrobacter luteolus, AY739662

100
100

   Novosphingobium subarcticum, AY151394
   Sphingomonas subarctica, X94103

50

100

   Novosphingobium hassiacum, AJ416411
   Novosphingobium sp, AJ000920

   Sphingomonas subterranea, U20773

58

   Sphingomonas sp, AJ001051

64

 uncultured bacterium, AY212578
 uncultured bacterium, AY212693

 uncultured alpha, AJ575709

100

57

73

82

 Rhizobium rhizogenes, D13945

Figure 1 Phylogenetic tree showing relationships between the
isolated Alphaproteobacteria (bold, including strain designation,
RFLP group, and accession number), closely related environmental

sequences, and cultured representatives, inferred from 16S rRNA gene
sequence analyses. Bootstrap values greater than 50% are shown

  Aminomonas aminovorus, AY027801
   Methylomonas methanolica, M95660

  Methylobacillus flagellatus, M95651
   Methylovorus mays, AY486132

95

   uncultured beta, AY423626
   uncultured bacterium;, AY546500

   Methylophilus sp., AY436797
   Methylophilus sp., AY436800

   Methylophilus freyburgensis, AJ517772
   Methylophilus leisingeri, AF250333

100

100
78

  uncultured beta, AJ582036
  uncultured beta, AJ534622

100

  uncultured bacterium, AY424823
   uncultured bacterium, AB179689

  uncultured bacterium, AY546509
  HTCC4037, FRX5, EF628479

  HTCC4045, FRX5, EF628482

  uncultured marine, AF159666
   uncultured marine, AF159665

100

100
88

64

85

58

60

   uncultured beta, AF289172
  uncultured freshwater, Z99999

  HTCC2181
  KB13, 
  uncultured beta, AY354843

90
100

70
66

 uncultured bacterium, AJ290001
 uncultured eubacterium, AJ224990

 uncultured beta, AF534426

84

  HTCC4038, FRX6, EF628480

100

  uncultured beta, AJ575703

81

  uncultured Alcaligenaceae, AF513937

83

   Alcaligenes xylosoxydans, AY468369

92

   Pigmentiphaga kullae, AF282916

84

  Aquimonas fontana, AB120965
  uncultured bacterium, AJ295499

  uncultured bacterium, AY168739
  glacier bacterium, AY315177
  HTCC4042, FRX4, EF628481

   uncultured eubacterium, AJ224987

69

  HTCC4013, FRX4, EF628475

  glacier bacterium, AY315174
   Polaromonas aquatica, AM039830
 uncultured beta, AJ575698
  ÒCoccomonas naphthalovoransÓ, AY166684
  uncultured bacterium, AF468328

  Polaromonas vacuolata, U14585
  HTCC4077, ELB10, EF628485

  HTCC4112, ELB10, EF628494

 glacier bacterium, AY315175
  glacier bacterium, AY315176

 glacier bacterium, AY315178
 uncultured Comamonadaceae, AF523012

53

75

98

74

60
66

84

100

100

100

58

  Escherichia coli, AJ567617

Figure 2 Phylogenetic tree
showing relationships between
the isolated Betaproteobacteria
(bold, including strain designa-
tion, RFLP group, and accession
number), closely related envi-
ronmental sequences, and cul-
tured representatives, inferred
from 16S rRNA gene sequence
analyses. Bootstrap values
greater than 50% are shown
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Cultured Alphaproteobacteria

Among the Alphaproteobacteria, all RFLP groups clustered
within the Sphingomonadales and represent members of the
families Erythrobacteraceae (RFLP group ELB8) or Sphi-
nomonadaceae (RFLP groups FRX1 and ELB7) and were
closely related to uncultured bacteria found in marine and
freshwater habitats (Fig. 1). ELB8 was closely related to
bacterial sequences obtained from sea ice [5]. FRX1 and
ELB7 were closely related to a bacterium isolated from the
ultraoligotrophic Crater Lake, using the same techniques as
applied in this study [27].

Cultured Betaproteobacteria

Isolates in the Betaproteobacteria came from two different
phylogenetic groups. RFLP groups FRX4 and ELB10
cluster within Comamonadaceae and were closely related
to the genus Polaromonas (Fig. 2, [17]). This group of
organisms has been commonly seen in subglacial and other
ice-covered environments [11, 13, 34]. Sequences from
RFLP group FRX5 clustered within the marine OM43
clade of the Betaproteobacteria. Members of the OM43
group were cultivated from marine environments using
dilution-to-extinction culturing [9], but so far, no validly
described species exist. They were recently reported as one
of the dominant components of the bacterial community
during a diatom bloom at the Oregon coast [24].

Cultured Actinobacteria

Isolates from the phylum Actinobacteria were recovered
exclusively from ELB and were only distantly related to
validly described species (Fig. 3). The sequences clustered
together with uncultured bacteria in two unclassified groups
within the order Actinomycetales (RFLP groups ELB15 and
ELB16). The most closely related sequences to ELB 15
came from uncultured bacteria from Arctic and Antarctic
pack ice [5]. ELB 16 clustered together with a sequence
obtained from the anoxic sediment of an Antarctic lake in
the Vestfold Hills [3].

Cultured Bacteroidetes

Isolates from the phylum Bacteroidetes were exclusively
recovered from ELB (Fig. 4). RFLP groups associated with
this phylum represent two different phylogenetic lineages:
Flavobacteriaceae, containing isolates from the genera
Cellulophaga (RFLP group ELB13) and Flavobacterium
(RFLP group ELB14) and from the order Sphingobacter-
iales with the genera Algoriphagus (RFLP group ELB11)
and Pedobacter (RFLP group ELB12). Sequences closely
related to these isolates were retrieved from marine envi-
ronments [25] and glaciers [11]. Unpublished sequences
closely related to ELB14 were recovered from freshwater
environments (AF493663, AF493637, DQ017917).

  HTCC4145, ELB16, EF628502

  uncultured bacterium, AF142808
  HTCC4138, ELB16, EF628501

67

  uncultured Actinomycetales, AY370630

98

 Actinobacterium GP  6, A145534
  Actinomycetales bacterium, AY145533

79

93

   unidentified bacterium, AB021325
   unidentified bacterium, AB021332

59

100

  uncultured bacterium;, AJ576385

96

  uncultured bacterium, AJ277695
   uncultured bacterium, AJ277694

77

100

 Sporichthya brevicatena, AB006164
  Sporichthya polymorpha, AB025317

100

   uncultured actinobacterium, AJ575502
  uncultured bacterium, AF418967

  uncultured Crater, AF316665

100 
100

  Thermopolyspora flexuosa, AY039253
Streptosporangium album, D85469

89

100 

  uncultured bacterium, AF468233
  uncultured bacterium, AF468240

  uncultured bacterium, AF468297
 uncultured bacterium, AF468234

71

  HTCC4091, ELB15, EF628488

96

  unidentified bacterium, AY344421
  uncultured actinobacterium, AY370632

  uncultured actinobacterium, AF454303

100

89

  uncultured bacterium, AY532590
  uncultured actinobacterium, AJ575535

   uncultured bacterium, AF418962

56

94

   Acidimicrobium ferrooxidans, U75647

100

100

70

   Escherichia coli, AJ567617

67

Figure 3 Phylogenetic tree showing relationships between the
isolated Actinobacteria (bold, including strain designation, RFLP
group, and accession number), closely related environmental sequen-

ces, and cultured representatives, inferred from 16S rRNA gene
sequence analyses. Bootstrap values greater than 50% are shown
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Comparison of Isolates with rRNA Gene Clone Libraries
from the Same Samples

One half (15 of 30) of the isolates show high 16S rRNA
gene sequence similarity (>97%) to clones from environ-
mental DNA extracted from the same environments,
including ten isolates with greater than 99% similarity to
clones from these libraries (Table 5; Foo and Lanoil,
unpublished). Cellulophaga pacifica is the closest relative
of two and Agrobacterium sanguineum of one of these
isolates; the remaining are most closely related to uncul-
tured sequences obtained from diverse environments
including estuarine, lacustrine, and marine environments.
Another six isolates show a sequence similarity between 93
and 97% to clones obtained from the same libraries. It is
surprising to note that the remaining isolates are distinct
from clones obtained from these environments and are
primarily from the Alphaproteobacteria group, which

represents less than 10% of the total clone libraries from
each of the three systems (Foo and Lanoil, unpublished).
Planned fluorescence in situ hybridization studies will
determine whether these isolates are underrepresented in
the clone library or overrepresented in the culture collection.

Conclusions

Previous culturing studies of permanently ice-covered lakes
in Antarctica do not show satisfactory overlap with culture-
independent studies (Foo and Lanoil, unpublished; [4, 15]).
In this study, we show that by using dilution-to-extinction
culturing in media based on natural lake water, abundant
phylotypes can be cultured from these extreme environ-
ments. Although throughput in this study was low
compared to high-temperature combustion in marine envi-
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100
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Figure 4 Phylogenetic tree showing relationships between the
isolated Bacteroidetes (bold, including strain designation, RFLP
group, and accession number), closely related environmental sequen-

ces, and cultured representatives, inferred from 16S rRNA gene
sequence analyses. Bootstrap values greater than 50% are shown

402 U. Stingl et al.



ronments [9], we showed that the technique is applicable to
these specific environments and that some abundant
bacteria can be cultured including novel strains of groups
that were hitherto uncultured. The most likely explanation
for the success of modified lake water as a medium is that
no artificial media can replicate all of the relevant
environmental conditions, especially in environments that
are highly stable, stratified, and gradient dominated like the
MCM lakes [31, 35, 38].

Culturing efficiency between the three locations varied.
This can be explained to a certain degree by differences in
inoculum density. The ELB plates, which yielded most of
the cultures, were inoculated with the highest densities (20
cells mL−1), whereas FRX and WLB plates were inoculated
with fewer cells (3–10 cells mL−1). The fact that the

culturing efficiency of WLB was lower than from FRX can
be explained by the depth from which the inoculum was
taken: Samples from FRX came from the oxic epilimnion,
whereas the samples from WLB were collected from the
suboxic hypolimnion, close to the sediment where almost
no heterotrophic activity is present [37]. Culture conditions
were not optimized for the suboxic to anoxic conditions
found in this environment.

In many environments, the most abundant groups of
bacteria remain uncultured. Dilution-to-extinction culturing
in media prepared directly from the environment can
improve culturing efficiencies. Future studies will concen-
trate on the spatial and temporal distribution of the isolated
bacteria in the MCM lakes and on their metabolic
properties and functions.

Table 5 Similarity of isolates to 16S rRNA gene clones retrieved from the same lakes and same depths [12]

RFLP
group*

Culture
source

Nearest Blast Neighbor Similarity to
BLAST neighbor

Closest
clone match

Similarity
to clone†

Clone location
(number of clones)

1 FRX Alpha proteobacterium LH1D (DQ535022) 99% W6-131 93% WLB (1)
2 FRX Antarctic bacterium R-9478 (AJ441013) 99% W6-68 99% WLB (1)
3 FRX Ralstonia sp. Q3-8/14 (AY216798) 99% E6-131 91% ELB (4), FRX (2),

WLB (8)
4 FRX Uncultured bacterium clone ANTLV7_H07

(DQ521547)
99% W6-7 97–98% ELB (1), FRX (1)

5 FRX Uncultured beta proteobacterium clone
C319a-R8C-F6 (AY678527)

97% F6-79 99–100% FRX (1), WLB (1)

6 FRX Beta proteobacterium QLW-P2DMWB-4
(AJ938031)

98% E6-131 99% ELB (4), FRX (2),
WLB (8)

7 ELB Alpha proteobacterium LH1D (DQ535022) 99% W6-131 93% WLB (1)
8 ELB Arctic sea ice bacterium ARK10016

(AF468353)
99% W18-3 86% WLB (10)

9 ELB Uncultured bacterium clone KSC2-39
(DQ532286)

99% W38-82 89% WLB (3)

10 ELB Glacier bacterium FXS33 (AY315176) 99% W6-7 97% ELB (1), WLB (1)
11 ELB Algoriphagus yeomjeoni strain MSS-161

(AY699795)
97% W18-16 96% ELB (7), FRX (2),

WLB (11)
12 ELB Sphingobacteriaceae bacterium SOC A20

(36) (DQ628953)
99% F9-101 99% ELB (2), FRX (1),

WLB (1)
13 ELB Cellulophaga pacifica (AB100842) 95% W6-60 99% ELB (9), FRX (3),

WLB (12)
14 ELB Uncultured bacterium clone ANTLV2_D10

(DQ521513)
99% F9-50 99% FRX (1), WLB (1)

15 ELB Uncultured bacterium clone ANTLV2_D07
(DQ521512)

99% E6-82 90% ELB (1), FRX (21)

16 ELB Uncultured bacterium clone
sponge_clone11 (AY948359)

99% F9-55 98–100% ELB (6), FRX (4),
WLB (2)

17 WLB Sphingomonas sp. oral clone AV069
(AF385529)

99% W6-131 92% WLB (1)

18 WLB Uncultured beta proteobacterium clone
SM1G08 (AF445700)

99% W6-7 93% ELB (1), FRX (1)

*See Table 4 for more details.
† If there are multiple isolates with different similarities in the same RFLP group, a range of similarities is given.
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